تخمین پارامترهای مکانیک شکست در دمای بالا با استفاده از شبکه های عصبی مصنوعی

پایان نامه
چکیده

اصولا بسیاری از قطعات مکانیکی یا سازه ها در دمای بالا در شرایط کاری سخت قرار داشته و لذا عمری محدود دارند از آنجا که این قطعات از جنس سوپر آلیاژها هستند و با روشهای تولید پر هزینه ساخته می شوند جایگزینی آنها بسیار گران است بنابراین برآورد دقیق عمر این گونه قطعات امری مهم بشمار می آید مکانیک شکست با ارایه های مدلسازی رشد ترک ناشی از خزش می تواند به عنوان بخشی ممهم از یک برنامه تخمین عمر در نظر گرفته شود تعیین دقیق پارامترهای مکانیک شکست نظیر ضریب شدت تنش انتگرال j و c برای مدلسازی رشد ترک ناشی از خزش ضروری می باشد. محاسبه پارامترهای غیر خطی نوک ترک حین خزش برای اجسام دارای هندسه پیچیده بواسطه تحلیل های اجزا محدود زمان بر است روش شبکه عصبی مصنوعی دارای قابلیت های منحصر به فردی برای پیش بینی فرآیندهای غیر خطی مشابه فرایند مورد استفاده در این پروژه می باشد در این رساله با مدلسازی قطعه ct تحلیل المان محدود آن در محدوده گسترده ای از درجه حرارت و نیرو ابعاد انجام شده است. این نتایج با داده های تجربی مقایسه شده اند. سپس با توجه به طبیعت غیر خطی این فرایند تلفیقی از نتایج تجربی و عددی به شبکه عصبی داده شده است. در این مرحله با استفاده از 3 شبکه شبیه سازی انجام گرفته است که بر اساس نتایج ارایه شده شبکه پرسپترون چند لایه با تابع محرک تانژانت و با 16 نرون در لایه پنهان اول و 4 نرون در لایه پنهان دوم بهترین جواب را ارایه داده است که میانگین درصد خطای داده های تست و آموزش در آن به ترتیب 8/3%و 2/2% است که برای این فرایند مطلوب می باشد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  GF(انرژی مخصوص شکس...

متن کامل

تخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی

    در سال‌های اخیر با بهره‌گیری از روش‌های مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونه‌های سنگی مورد بررسی قرار گرفته است. اغلب گسیختگی‌های رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ می‌باشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگی‌ها در حفریات سطحی و زیرزمینی از اهمیت ویژه‌ای برخوردار می‌باشد. بررسی جامع دستاوردهای علمی‌در خصوص تعیین سختی برش...

متن کامل

تخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی

در سال­های اخیر با بهره­گیری از روش­های مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونه­های سنگی مورد بررسی قرار گرفته است. اغلب گسیختگی­های رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ می­باشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگی­ها در حفریات سطحی و زیرزمینی از اهمیت ویژه­ای برخوردار می­باشد. بررسی جامع دستاوردهای علمی در خصوص تعیین سختی برشی شک...

متن کامل

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  gf(انرژی مخصوص شکس...

متن کامل

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

متن کامل

تخمین پارامترهای شتاب، سرعت و جابجایی ماکزیمم زمین با استفاده از شبکه عصبی مصنوعی

به منظور انجام تحلیل‏های دینامیکی و همچنین تعیین میزان خطرپذیری در هر منطقه بایستی بتوان پارامترهای زمین‌لرزه‌ احتمالی آن منطقه را تخمین زد. در این مقاله تلاش خواهد شد با استفاده از شبکه عصبی مصنوعی مقادیر شتاب، سرعت و جابجایی ماکزیمم زمین تخمین زده شود. بدین منظور از شبکه‏ها‏ی عصبی به عنوان یکی از روش‏ها و تکنیک‏های کاربردی هوش مصنوعی در ارائه یک روش محاسباتی ساده‏تر برای حذف تردیدها و عدم قطع...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران - دانشکده مهندسی مکانیک

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023